How to Beat Investing or Gambling

(Admit it, you were looking for a step by step guide!)

Well, being a human, if I had that… and I’m not claiming I do, per se… I wouldn’t post it on the Internet.  I’d use my superior knowledge to extract a bunch of money, and when it broke down later I’d write a tell-all book…  This article is going to be way more cerebral!

At DQYDJ, we’re fans of Nassim Nicholas Taleb – at least his philosophy on there being ‘unknown unknowns’.  He may not have been the first person to use the phrase ‘Black Swans’ to describe previously unknown ideas suddenly becoming known, but he certainly jammed it into the investing lexicon pretty forcefully.  We’re going to play off the title of his 2008 book, Fooled By Randomness, for this piece.

Here goes: just like it is possible for people to not appreciate the randomness of risks, it is also possible for people to assume perfect randomness where it doesn’t exist.

Investing, Gambling, and… Computer Gaming?

It’s no secret that I (PK) am an engineer.  On some articles, that fact actually becomes relevant (!) – in Computer Science, we draw a very bright line between random numbers, and pseudo-random numbers.  Early Computer Engineers will get a list looking like:

  • 11111111111111111111111111111111111111111
  • 1010101010101010101010101010101010
  • 00110111001011101111000100110101011

…and have to systematically explain why the number can’t be random (engineer joke: there are only 10 possible numbers making up those 11 larger numbers!!!).  Usually the answers go something like:

  • Can’t be random – it’s 100% 1s
  • Can’t be random – the 1s and 0s are really just oscillating
  • Can’t be random – you’re counting in binary (01- “one”, 10 – “two”, 11 – “three”, 100 – “four”).
Picture of a browser URL bar

Http? Odds are, No Encryption! (Morgue File)

Essentially, the list goes from ‘definitely not random‘, to ‘much harder to tell‘.  But randomness, in a statement, boils down to one simple fact – nobody can predict what number comes next in a sequence.  (The answers above?  1, 1, and 1).

Notice… I didn’t say you can’t tell what number comes next.  I said nobody can tell.  I should have also said nobody will ever tell - but let’s not skip too far ahead!  As we’ve seen many times here on DQYDJ, someone will beat the casinos or markets because the general population assumed some process was random when it was actually quite predictable:  Ed Thorpe recognizing that a computer could do the math to beat roulette (PDF)?  People beating lotteries?  The Price to Sales ratio?

Over and over again, relationships people assumed were random were broken because:

  1. Someone didn’t work off the assumption that a process was truly random
  2. New technology or new discoveries made a previously unpredictable process predictable

Which brings us to a quick note on computer gaming, and software in general.  When true randomness isn’t absolutely necessary, engineers rely on pseudo-random numbers (computer randomness isn’t impossible, but pseudo-random generation is easier).  These numbers use seeds, such as the current time, and push them through equations to come up with ‘random looking’ numbers.  In some cases – that’s good enough.  In other places it isn’t - if you’re going to make a lot of money on an idea, in essence you want to try to figure out if a process labeled ‘random’ is actually ‘pseudo-random’.

Another Example: Encryption

In this era when we’ve still got the NSA on our minds (and the NSA has us on their monitors – bah-bum-cha!), let’s look at encryption.

Stated, simply, encryption is the process of making things hard to read by using mathematical properties of so called one-way functions.  The goal of encryption changes, but the general idea is to make it so that the only vulnerability encryption has is ‘brute force’ – literally trying every combination until a lock is broken.  An encryption method is ‘broken’ when it takes much less time than brute force to crack it.  If, for example, you’ve got an 8 digit password, but every password starts with ’111111′… well, that certainly narrows the problem set!

Why do I bring this up?  Well, because NSA, of course!  In the 1970s, IBM released what was to become one of the first widely deployed encryption standards, known as Data Encryption Standard.  Cryptically (has there ever been a more perfect word?), the NSA told IBM to make a few changes to how DES worked:

  1. IBM should order their keys in a very specific pattern (this was to make it easier to produce hardware implementations of the standard – yes, semiconductors were expensive at the time!)
  2. Curiously, IBM should shorten the key length and change how the “S-Boxes” worked.

For the purposes of this basic discussion, know that it later came out that the S-Boxes were vulnerable to an exploit which, while known to the NSA, wouldn’t be known to the general public for another (whopping) 15 years… differential cryptanalysis.  Yes, the previous 15 years were full of lots of paranoia, but it turned out the NSA helped harden security before DC would later render the original spec obsolete.

And so it goes in cryptography.  I learned about the subject from Leonard Adelman (as a student!), who happens to be the ‘A’ in RSA.  Encryption algorithms boil down to mathematical properties – one, the idea that some algorithms in computer science can not be reduced in complexity (known as one of the great unsolved problems of Mathematics, ‘NP=P?’), and two, that some algorithms are definitely NP-complete (the highest complexity algorithms).  In RSA, specifically, the assumption is that factoring integers (specifically prime numbers) is now and will always be an intensely difficult task.  Yes, computers will get more powerful, but the idea is that it’s easier to encrypt than to decrypt – a 1024 bit key could simply increase in size to counteract a faster computer (even your cell phone can break small keys nowadays with brute force).

Of course, the future is a bit more obvious to us with factorization problems – Peter Shor’s algorithm, when applied on a quantum computer, can factor primes much quicker than any algorithm known today.  Perhaps a restatement would say – encryption’s point is to make decoding messages prohibitively expensive.  Unless you’ve got a few thousand qubits in a quantum computer, you probably can’t crack RSA today.  Unless, you know, there is a better algorithm out there kept under wraps by some rogue mathematician somewhere.  (Many of your internet transactions are covered by an algorithm called AES).

And so it goes – things we assume are difficult today might be trivial tomorrow.  For an investing example?  High Frequency Trading – impossible in the 1960s, pervasive today.

Thus goes technology – and you need to take away another lesson here: difficulty today alone may not prevent you from cracking the code – it might only delay you.

My Modification: Fooled By Pseudorandomness

… and pseudodifficulty, I suppose.

Seriously though, in all of these areas the key is the same thing – people assume something is too difficult, or assume a process is random… when it actually isn’t.  If you’re able to cut through the noise and the doubts – potentially even from close friends and family – you could be well on your way to untold riches.  Or, hey, you could just be wasting your time.

But really, if you’re going to beat the system… and people will, in the future… these theoretical underpinnnings explain exactly how.  Call this the ‘Alpha Manifest’!

Tweet about this on Twitter4Share on Facebook3Share on Google+0Share on Reddit0Share on StumbleUpon0Email this to someone

Comments

  1. AvgJoeMoney says

    Amen! I love a series of books called Stock Market Wizards. These guys would take data from the financial markets that most thought were random and exploit them for nice gains. Sadly, in every case, their systems worked for a while and then market changes took away the winning hand. Some of these investors have been successful because of the way they were able to think about uncovering patterns.

    • says

      Price to Sales followed the same path – when fisher found it, it was very much profitable. Of course, he gave away the golden goose in his columns – which ingratiated him with the public. Ironically, he probably made more money as an asset manager than he could have exploited at the time – but he’s a good guy in general (I talked to him briefly back in 2008).

  2. krantcents says

    I think everyone thinks there is a system to beat the market or gambling. It works for a while or maybe occasionally, but there is no consistency. I think it overlooks the need for good research in the stock market or setting limits in gambling.

    • says

      I’m sympathetic to the thought that it is beatable – just not sympathetic to people who claim the ability to beat it in their head or by just drawing lines on a chart. Any exploitable system at this point is going to require the hard research – whether your system is value or technical.

  3. Andy Hough says

    Figuring out if something is not really random is probably beyond my ability. I do like to look at promotions and see if there is a way to take advantage of them that the company didn’t predict. It would be pretty cool if I could find a flawed promotion like the Healthy Choice Pudding Guy did.

    • says

      I was just happy back during Bing Cashback stacking site coupons, credit card bonuses, and multiple cashback programs. Ahh, the golden age of cashback…

  4. The College Investor says

    It’s the same theory as advanced technology being considered magic. People who aren’t aware or don’t have the education to think about it correctly will always be fooled. Or, there are people who just want to be fooled.

Trackbacks

Leave a Reply

Your email address will not be published. Required fields are marked *